
L’injection de dépendance ou comment découpler
ses objets

Thibaud Dauce
thibaud@dauce.fr – @ThibaudDauce

26 novembre 2015

Application de recherche et de destruction de droides

L’Ubuesque Boîte à Savon sur Flickr

daniel sur Flickr

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function destroyDroid(Picture $picture) {
5 // Get all droids from file
6 $file = new File("yearbooks/droids.txt");
7 $allDroids = [];
8 foreach ($file->getLines() as $line) {
9 $allDroids[] = new Droid($line);

10 }
11

12 // Check droids
13 foreach ($allDroids as $droid) {
14 if ($droid->look === $picture) {
15 $droidFound = $droid;
16 }
17 }
18

19 // Destroy droid
20 if (isset($droidFound)) {
21 $deathStar = new DeathStar();
22 $deathStar->destroy($droidFound->getPlanet());
23 } else {
24 throw new DroidNotFoundException();
25 }
26 }
27 }

JD Hancock sur Flickr

Separation of concerns

leg0fenris sur Flickr

Analyse descendante

leg0fenris sur Flickr

Tester unitairement son application

brett jordan sur Flickr

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function destroyDroid(Picture $picture) {
5 // Get all droids from file
6 ...
7

8 // Check droids
9 foreach ($allDroids as $droid) {

10 if ($droid->theseArentTheDroidsYoureLookingFor()) {
11 continue;
12 }
13

14 if ($droid->look === $picture) {
15 $droidFound = $droid;
16 }
17 }
18

19 // Destroy droid
20 ...
21 }
22 }

1 <?php
2

3 class DroidRepository {
4 public function getAll(): array {
5 $file = new File("yearbooks/droids.txt");
6 $allDroids = [];
7 foreach ($file->getLines() as $line) {
8 $allDroids[] = new Droid($line);
9 }

10 return $allDroids;
11 }
12 }
13

14 class DroidFinder {
15 // return Maybe[Droid] ;-)
16 public function findDroid(array $droids, Picture $picture): Droid {
17 // foreach droids check picture
18 return $droid;
19 }
20 }
21

22 class PlanetDestroyer {
23 public function destroy(Planet $planet) {
24 $deathStar = new DeathStar();
25 $deathStar->destroy($planet);
26 }
27 }

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function destroyDroid(Picture $picture) {
5 // Get all droids from file
6 $droidRepository = new DroidRepository();
7 $droids = $droidRepository->getAll();
8

9 // Check droids
10 $droidFinder = new DroidFinder();
11 $droid = $droidFinder->findDroid($droids, $picture);
12

13 // Destroy droid
14 if (isset($droidFound)) {
15 $planetDestroyer = new PlanetDestroyer();
16 $planetDestroyer->destroy($droidFound->getPlanet());
17 } else {
18 throw new DroidNotFoundException();
19 }
20 }
21 }

Modifier facilement des implémentations

JD Hancock sur Flickr

1 <?php
2

3 interface DroidRepository {
4 /**
5 * Return all the droids.
6 *
7 * @return Droid[]
8 */
9 public function getAll(): array;

10 }
11

12 final class FileDroidRepository implements DroidRepository {
13 public function getAll(): array {
14 // File implementation
15 }
16 }
17

18 final class MongoDroidRepository implements DroidRepository {
19 public function getAll(): array {
20 // Mongo implementation
21 }
22 }

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function destroyDroid(Picture $picture) {
5 // Get all droids from Mongo
6 $droidRepository = new MongoDroidRepository();
7 $droids = $droidRepository->getAll();
8

9 // Check droids
10 ...
11

12 // Destroy droid
13 ...
14 }
15 }

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function __construct(DroidRepository $droidRepository) {
5 $this->droidRepository = $droidRepository;
6 }
7

8 public function destroyDroid(Picture $picture) {
9 // Get all droids from file

10 $droids = $this->droidRepository->getAll();
11

12 // Check droids
13 ...
14

15 // Destroy droid
16 ...
17 }
18 }

Pas toujours besoin d’interface

Kristina Alexanderson sur Flickr

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function __construct(
5 DroidRepository $droidRepository,
6 DroidFinder $droidFinder
7) {
8 $this->droidRepository = $droidRepository;
9 $this->droidFinder = $droidFinder;

10 }
11

12 public function destroyDroid(Picture $picture) {
13 // Get all droids from file
14 $droids = $this->droidRepository->getAll();
15

16 // Check droids
17 $droid = $this->droidFinder->findDroid($droids, $picture);
18

19 // Destroy droid
20 ...
21 }
22 }

1 <?php
2

3 class DroidSearchAndDestroy {
4 public function __construct(
5 DroidRepository $droidRepository,
6 DroidFinder $DroidFinder,
7 DeathStar $deathStar
8) {
9 $this->droidRepository = $droidRepository;

10 $this->droidFinder = $droidFinder;
11 $this->deathStar = $deathStar;
12 }
13

14 public function destroyDroid(Picture $picture) {
15 $droids = $this->droidRepository->getAll();
16

17 $droidFound = $this->droidFinder->findDroid($droids, $picture);
18

19 if (isset($droidFound)) {
20 $this->deathStar->destroy($droidFound->getPlanet());
21 } else {
22 throw new DroidNotFoundException();
23 }
24 }
25 }

Kristina Alexanderson sur Flickr

1 <?php
2

3 $droidSearchAndDestroy = new DroidSearchAndDestroy(
4 new MongoDroidRepository(
5 new MongoConnection("user", "password")
6),
7 new DroidFinder(),
8 new DeathStar(
9 new Gun(

10 new Trigger()
11),
12 new Reactor(
13 new Engine(
14 new FuelConsumer()
15)
16),
17 new Shield(
18 new ForceField()
19)
20)
21);
22

23 $droidSearchAndDestroy->destroy($picture);

IoC Container

Walt Jabsco sur Flickr

1 <?php
2

3 // Bind the interface to the implementation
4 $container->bind(DroidRepository::class, MongoDroidRepository::class);
5

6 // Bind the parameters
7 $container->bind(MongoConnection::class, function() {
8 return new MongoConnection("user", "password");
9 });

10

11 // Don’t create a new object each time
12 $container->bindShared(DeathStar::class);
13

14 $droidSearchAndDestroy = $container->make(DroidSearchAndDestroy::class);
15 $droidSearchAndDestroy->destroy($picture);

thibaud@dauce.fr – @ThibaudDauce

W_Minshull sur Flickr

