L'injection de dépendance ou comment découpler
ses objets

Thibaud Dauce
thibaud@dauce.fr — @ThibaudDauce

26 novembre 2015

= -
el

B
LS

Ubuesque Boite a Savon sur Flickr

daniel sur Flickr

© 0 N O U W N -

I I R R I N N S R
N0 R W~ O OO A WN RO

<?php

class DroidSearchAndDestroy {

}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$file = new File("yearbooks/droids.txt");
$allDroids = [1;
foreach ($file->getLines() as $line) {
$allDroids[] = new Droid($line);
¥

// Check droids
foreach ($allDroids as $droid) {
if ($droid->look === $picture) {
$droidFound = $droid;
}
¥

// Destroy droid

if (isset($droidFound)) {
$deathStar = new DeathStar();
$deathStar->destroy($droidFound->getPlanet());

} else {
throw new DroidNotFoundException() ;

}

}

Separation of concerns

legOfenris sur Flickr

Analyse descendante

legOfenris sur Flickr

brett jordan sur Flickr ,

© 0N OO e W N

O I e R R R
N RO © XN O Uk WwN R~ O

<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {
// Get all droids from file

// Check droids
foreach ($allDroids as $droid) {
if ($droid->theseArentTheDroidsYoureLookingFor()) {

continue;

}

if ($droid->look === $picture) {
$droidFound = $droid;

}

}

// Destroy droid

© 0 N O U W N -

I I R e e e
N - O © o~ O U A WN R~ O

<?php

class DroidRepository {
public function getAll(): array {
$file = new File("yearbooks/droids.txt");
$allDroids = [1;
foreach ($file->getLines() as $line) {
$allDroids[] = new Droid($line);
¥
return $allDroids;
}
}

class DroidFinder {
// return Maybe[Droid] ;-)
public function findDroid(array $droids, Picture $picture): Droid {
// foreach droids check picture
return $droid;
}
}

class PlanetDestroyer {
public function destroy(Planet $planet) {
$deathStar = new DeathStar();
$deathStar->destroy($planet);
}
}

© 0 N U W N

L T T S v S ~ S SOy SO S
R O © N WA WN R~ O

<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {

}

}

// Get all droids from file
$droidRepository = new DroidRepository();
$droids = $droidRepository->getAll();

// Check droids
$droidFinder = new DroidFinder();
$droid = $droidFinder->findDroid($droids, $picture);

// Destroy droid
if (isset($droidFound)) {
$planetDestroyer = new PlanetDestroyer();
$planetDestroyer->destroy($droidFound->getPlanet());
} else {
throw new DroidNotFoundException();

}

Modifier facilement des implémentations

’ » - -

d 13

'K

© 0N OO e W N

e e e e
N OOk W N = O

18

<?php

interface DroidRepository {

}

final class FileDroidRepository implements DroidRepository {
public function getAll(): array {

}

final class MongoDroidRepository implements DroidRepository {
public function getAll(): array {

}

/

public function getAll(): array;

}

}

*%

* Return all the droids.
*

* @return Droid[]

*/

// File implementation

// Mongo implementation

© 0 N O U e W N -

e e e
UL W NN = O

<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {
// Get all droids from Mongo
$droidRepository = new MongoDroidRepository();
$droids = $droidRepository->getAll();

// Check droids

// Destroy droid

© 0N U e W N

e e T e e
W N 3 Uk W N = O

<?php

class DroidSearchAndDestroy {
public function __construct(DroidRepository $droidRepository) {
$this->droidRepository = $droidRepository;
}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$droids = $this->droidRepository->getAll();

// Check droids

// Destroy droid

Vad

ristina Alexandel r Flickr

© 0N OO e W N

O I e R R R
N RO © XN O Uk WwN R~ O

<?php

class DroidSearchAndDestroy {

public function __construct(
DroidRepository $droidRepository,
DroidFinder $droidFinder

) {
$this->droidRepository = $droidRepository;
$this->droidFinder = $droidFinder;

}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$droids = $this->droidRepository->getAll();

// Check droids
$droid = $this->droidFinder->findDroid($droids, $picture);

// Destroy droid

© 0 N O U W N

NN NN R R R e e
R W N RO © XN O R W= O

<?php

class DroidSearchAndDestroy {

public function

}

__construct(
DroidRepository $droidRepository,
DroidFinder $DroidFinder,

DeathStar $deathStar

{

$this->droidRepository = $droidRepository;
$this->droidFinder = $droidFinder;
$this->deathStar = $deathStar;

public function destroyDroid(Picture $picture) {

}
}

$droids = $this->droidRepository->getAll();
$droidFound = $this->droidFinder->findDroid($droids, $picture);

if (isset($droidFound)) {
$this->deathStar->destroy($droidFound->getPlanet());
} else {
throw new DroidNotFoundException();

}

© 0 N O U e W N -

I R I e T e e e
W NP O ©mNO U A WN RO

<?php

$droidSearchAndDestroy = new DroidSearchAndDestroy (
new MongoDroidRepository(
new MongoConnection("user", "password'")
),
new DroidFinder(),
new DeathStar(
new Gun(
new Trigger()
),
new Reactor(
new Engine(
new FuelConsumer ()
)
),
new Shield(
new ForceField()
)
)
)3

$droidSearchAndDestroy->destroy($picture) ;

loC Container

R U

© 0 N U e W N

e e e
Ul W N = O

<?php

// Bind the interface to the implementation
$container->bind (DroidRepository::class, MongoDroidRepository::class);

// Bind the parameters
$container->bind (MongoConnection: :class, function() {
return new MongoConnection("user", "password");

B

// Don’t create a nmew object each time
$container->bindShared(DeathStar::class);

$droidSearchAndDestroy = $container->make(DroidSearchAndDestroy::class);
$droidSearchAndDestroy->destroy($picture) ;

thibaud@dauce.fr — @ThibaudDauce

L "

