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<?php

class DroidSearchAndDestroy {

}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$file = new File("yearbooks/droids.txt");
$allDroids = [1;
foreach ($file->getLines() as $line) {
$allDroids[] = new Droid($line);
¥

// Check droids
foreach ($allDroids as $droid) {
if ($droid->look === $picture) {
$droidFound = $droid;
}
¥

// Destroy droid

if (isset($droidFound)) {
$deathStar = new DeathStar();
$deathStar->destroy($droidFound->getPlanet());

} else {
throw new DroidNotFoundException() ;

}

}
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<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {
// Get all droids from file

// Check droids
foreach ($allDroids as $droid) {
if ($droid->theseArentTheDroidsYoureLookingFor()) {

continue;

}

if ($droid->look === $picture) {
$droidFound = $droid;

}

}

// Destroy droid
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<?php

class DroidRepository {
public function getAll(): array {
$file = new File("yearbooks/droids.txt");
$allDroids = [1;
foreach ($file->getLines() as $line) {
$allDroids[] = new Droid($line);
¥
return $allDroids;
}
}

class DroidFinder {
// return Maybe[Droid] ;-)
public function findDroid(array $droids, Picture $picture): Droid {
// foreach droids check picture
return $droid;
}
}

class PlanetDestroyer {
public function destroy(Planet $planet) {
$deathStar = new DeathStar();
$deathStar->destroy($planet);
}
}
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<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {

}

}

// Get all droids from file
$droidRepository = new DroidRepository();
$droids = $droidRepository->getAll();

// Check droids
$droidFinder = new DroidFinder();
$droid = $droidFinder->findDroid($droids, $picture);

// Destroy droid
if (isset($droidFound)) {
$planetDestroyer = new PlanetDestroyer();
$planetDestroyer->destroy($droidFound->getPlanet());
} else {
throw new DroidNotFoundException();

}
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<?php

interface DroidRepository {

}

final class FileDroidRepository implements DroidRepository {
public function getAll(): array {

}

final class MongoDroidRepository implements DroidRepository {
public function getAll(): array {

}

/

public function getAll(): array;

}

}

*%

* Return all the droids.
*

* @return Droid[]

*/

// File implementation

// Mongo implementation
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<?php

class DroidSearchAndDestroy {
public function destroyDroid(Picture $picture) {
// Get all droids from Mongo
$droidRepository = new MongoDroidRepository();
$droids = $droidRepository->getAll();

// Check droids

// Destroy droid
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<?php

class DroidSearchAndDestroy {
public function __construct(DroidRepository $droidRepository) {
$this->droidRepository = $droidRepository;
}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$droids = $this->droidRepository->getAll();

// Check droids

// Destroy droid
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<?php

class DroidSearchAndDestroy {

public function __construct(
DroidRepository $droidRepository,
DroidFinder $droidFinder

) {
$this->droidRepository = $droidRepository;
$this->droidFinder = $droidFinder;

}

public function destroyDroid(Picture $picture) {
// Get all droids from file
$droids = $this->droidRepository->getAll();

// Check droids
$droid = $this->droidFinder->findDroid($droids, $picture);

// Destroy droid
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<?php

class DroidSearchAndDestroy {

public function

}

__construct(
DroidRepository $droidRepository,
DroidFinder $DroidFinder,

DeathStar $deathStar

{

$this->droidRepository = $droidRepository;
$this->droidFinder = $droidFinder;
$this->deathStar = $deathStar;

public function destroyDroid(Picture $picture) {

}
}

$droids = $this->droidRepository->getAll();
$droidFound = $this->droidFinder->findDroid($droids, $picture);

if (isset($droidFound)) {
$this->deathStar->destroy($droidFound->getPlanet());
} else {
throw new DroidNotFoundException();

}
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<?php

$droidSearchAndDestroy = new DroidSearchAndDestroy (
new MongoDroidRepository(
new MongoConnection("user", "password'")
),
new DroidFinder(),
new DeathStar(
new Gun(
new Trigger()
),
new Reactor(
new Engine(
new FuelConsumer ()
)
),
new Shield(
new ForceField()
)
)
)3

$droidSearchAndDestroy->destroy($picture) ;
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<?php

// Bind the interface to the implementation
$container->bind (DroidRepository::class, MongoDroidRepository::class);

// Bind the parameters
$container->bind (MongoConnection: :class, function() {
return new MongoConnection("user", "password");

B

// Don’t create a nmew object each time
$container->bindShared(DeathStar::class);

$droidSearchAndDestroy = $container->make(DroidSearchAndDestroy::class);
$droidSearchAndDestroy->destroy($picture) ;
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